CONVERSION FACTORS - CANADIAN ABC EXAMINATION

On the left hand column of the table is the SI (Systeme International d'Unites). To convert from metric units to imperial units, simply multiple by the conversion factor in the upper portion of each cell. To convert from the Imperial units to metric units, simply multiple by the conversion factor in the lower portion of each cell. The arrows next to each conversion factor show the direction of the conversions.

Length			Area \& Volume			
mm	x $0.03937 \rightarrow$	inches	m^{2}	$\mathrm{x} \mathrm{10.763} 9 \rightarrow$	square feet	
	¢x 25.4			¢x 0.0929		
mm	$\times 3.28 \times 10^{-3} \rightarrow$	feet	m^{2}	$\mathrm{x} 1.196 \rightarrow$	square yards	
	¢x 304.8			¢x 0.8361		
cm	x $0.3937 \rightarrow$	inches	m^{2}	$\times 2.471 \times 10^{-4} \rightarrow$	acres	
	¢x 2.54			¢x 4046.9		
cm	$\mathrm{x} 0.0328 \rightarrow$	feet	ha	x 2.471 \rightarrow	acres	
	$\leftarrow \times 30.48$			¢x 0.40469		
m	x $39.37 \rightarrow$	inches	cm^{3}	x $0.061024 \rightarrow$	cubic inches	
	¢x 0.0254			-x 16.387		
m	$\mathrm{x} 3.281 \rightarrow$	feet	m^{3}	x $35.315 \rightarrow$	cubic feet	
	¢x 0.3048			¢x 0.02832		
km	x $3280.84 \rightarrow$	feet	m^{3}	x $219.9 \rightarrow$	Imperial gallons	
	$\leftarrow 0.3048 \times 10^{-3}$			$\leqslant \times 4.546 \times 10^{-3}$		
km	x $1093.61 \rightarrow$	yards	L	$\mathrm{x} 0.2199 \rightarrow$	Imperial gallons	
	$\leftarrow \times 9.144 \times 10^{-4}$			$\leftarrow \mathrm{x} 4.546$		
km	$\mathrm{x} 0.6214 \rightarrow$	miles	mL	x $0.000219 \rightarrow$	Imperial gallons	
	¢x 1.609			¢x 4546.09188		
Weight / Mass			m^{3}	$\times 0.2199 \times 10^{-3} \rightarrow$	Million Imp. gallons	
				<x 4.546×10^{3}		
g	$\times 2.205 \times 10^{-3} \rightarrow$	pounds	US gallons	$\mathrm{x} 0.8327 \rightarrow$	Imperial gallons	
	Ex 453.59			¢x 1.2001		
g	$\mathrm{x} 15.4323 \rightarrow$	grains	Work / Energy \& Power			
	¢x 0.064799					
g	$\times 0.03527 \rightarrow$	ounces	J	$\mathrm{x} 0.7376 \rightarrow$	foot pounds	
	¢x 28.3495			Ex 1.356		
mg	$\times 2.205 \times 10^{-6} \rightarrow$	pounds	kJ	$\mathrm{x} 0.9478 \rightarrow$	BTU	
	$\leftarrow \times 453592.3$			¢x 1.055		
mg	$\mathrm{x} 0.01543 \rightarrow$	grains	kW	x 1.341 \rightarrow	hp (electric)	
	¢x 64.799			$\leftarrow \times 0.7457$		
kg	x $2.2046 \rightarrow$	pounds	Pressure			
	<x 0.4536					
Temperature			Pa	$\mathrm{x} 0.145 \times 10^{-3} \rightarrow$	pounds per square inch	
			$\leftarrow \times 6.895 \times 10^{3}$			
${ }^{0} \mathrm{C}$	$\left(1.8 \times{ }^{0} \mathrm{C}\right)+32={ }^{0} \mathrm{~F} \rightarrow$	${ }^{0} \mathrm{~F}$		kPa	$\mathrm{x} \mathrm{0.145} \rightarrow$	pounds per square inch
	$\leftarrow{ }^{0} \mathrm{C}=\left({ }^{0} \mathrm{~F}-32\right) \times 0.5556$		$\leftarrow \times 6.895$			
			kPa	$\mathrm{x} 4.0145 \rightarrow$	inches of water column	
				¢x 0.249		
			kPa	$\mathrm{x} \mathrm{0.295} \rightarrow$	inches of mercury col.	
				¢x 3.386		
			psi	x $2.31 \rightarrow$	Feet of water depth	
				¢x 0.433		

Flow Rate (volume / time)

L/s	x $13.1985 \rightarrow$	gallons (Imperial) per minute	kg/h	$\mathrm{x} 2.205 \rightarrow$	pounds per hour	
	*x 0.07584			<x 0.4536		
L/s	$\mathrm{x} 0.0353 \rightarrow$	cubic feet per second	kg/d	x $2.205 \rightarrow$	pounds per day	
	¢x 28.316			¢x 0.4536		
L/s	$\mathrm{x} 2.1189 \mathrm{~T}$	cubic feet per minute	$\mathrm{g} / \mathrm{m}^{2} \mathrm{Xs}$	$\mathrm{x} 17.70 \rightarrow$	pounds per day per square foot	
	¢x 0.4719			<x 0.05651		
L/s	$\mathrm{x} 127.134 \rightarrow$	cubic feet per hour	$\mathrm{kg} / \mathrm{m}^{2} \mathrm{Xh}$	$\mathrm{x} 4.883 \rightarrow$	pounds per hour per square foot	
	$\leftarrow \times 7.865 \times 10^{-3}$			-x 0.2048		
L/s	$\mathrm{x} 0.019 \boldsymbol{\rightarrow}$	million gallons (Imperial) per day	$\mathrm{kg} / \mathrm{m}^{2} \mathrm{Xd}$	$x 0.2048 \rightarrow$	pounds per square foot per day	
	¢x 52.616			-x 4.883		
L/d	$x 0.219$ 975 $\boldsymbol{\rightarrow}$	gallons (Imperial) per day	kg/ha Xd	$x 0.8922 \rightarrow$	pounds per acre per day	
	¢x 4.5459			¢x 1.121		
ML/d	$x 0.219975 \rightarrow$	million gallons (Imperial) per day	kg/ha Xy	$x 0.8922 \rightarrow$	pounds per acre per year	
	¢x 4.5459			¢x 1.121		
$\mathrm{m}^{3} / \mathrm{d}$	x $219.975 \rightarrow$	gallons (Imperial) per day	$\mathrm{kg} / \mathrm{m}^{3} \mathrm{Xd}$	$\mathrm{x} 0.06243 \rightarrow$	pounds per cubic foot per day	
	$\begin{array}{\|l} \underset{\leftarrow}{\leftarrow} 4.5459 \mathrm{x} \\ 10^{-3} \end{array}$			<x 10.02		
$\mathrm{m}^{3} / \mathrm{d}$	$\begin{array}{lr} \hline \mathrm{x} & 0.219 \\ 97 \times 10^{-3} \rightarrow \\ \hline \end{array}$	million gallons (Imperial) per day	m/h	x $3.281 \rightarrow$	feet per hour	
	$\begin{aligned} & \underset{\leftarrow}{*} 4.5459 \mathrm{x} \\ & 10^{3} \end{aligned}$			¢x 0.3048		
$\mathrm{m}^{3} / \mathrm{s}$	$x 19.0056 \rightarrow$	million gallons (Imperial) per day	$\mathrm{m}^{3} / \mathrm{m}^{2} \mathrm{Xh}$	$\mathrm{x} 3.281 \boldsymbol{\rightarrow}$	gallons (Imperial) per day per square foot	
	-x 0.052616			$\leftarrow \times 2.0385 \times 10^{-3}$		
$\mathrm{m}^{3} / \mathrm{s}$		cubic feet per minute	$\mathrm{m}^{3} / \mathrm{m}^{2} \mathrm{Xh}$		cubic feet per hour per square foot	
	<x 4.719×10^{-4}			¢x 0.3048		
$\mathrm{m}^{3} / \mathrm{s}$	$\mathrm{x} 35.315 \rightarrow$	cubic feet per second	$\mathrm{m}^{3} / \mathrm{m}^{2} \mathrm{Xd}$		gallons (Imperial) per day per square foot	
	*x 0.02832			<x 0.04892		
$10^{3} \mathrm{X} \mathrm{m}^{3} / \mathrm{d}$	$\mathrm{x} 490.596 \rightarrow$	million gallons (Imperial) per day	$\mathrm{m}^{3} / \mathrm{kg}$		cubic feet per pound	
	¢x 4.5459			¢x 0.06243		
$\mathrm{m}^{3} / \mathrm{min}$	$\mathrm{x} 35.315 \rightarrow$	cubic feet per minute				
	$\leftarrow \mathrm{x} 0.02832$					
L/min	$\mathrm{x} 0.219975 \rightarrow$	gallons (Imperial) per minute				
	$\leftarrow \times 4.5504$					

AREAS

DETENTION TIME

Detention Time (hours) $=\underline{\mathrm{VT}}$
Q x 3600
$\mathrm{VT}=$ volume of $\operatorname{tank}\left(\mathrm{m}^{3}\right)$
$\mathrm{Q}=$ rate of flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$

OVERFLOW RATE

Weir Overflow rate $=$ $(\mathrm{L} / \mathrm{sXm})$	$\quad \mathrm{Q}$
WL	

```
Q = rate of flow (L/s)
WL = weir length (m)
Circumference of a circle =2\piR
```


EFFICIENCY

Overall Efficiency $(\%)=$ Output x 100
Input
Treatment $=$
Efficiency (\%)
$(\mathrm{Ci}-\mathrm{Ce}) \times 100$
Ci

CHLORINATION

Chlorine Dosage $=$ Chlorine Demand + Chlorine Residual

RATE OF CHLORINE DOSAGE

$\mathrm{CD}(\mathrm{mg} / \mathrm{L})=\frac{\mathrm{C}(\mathrm{kg}) \times 1000}{\mathrm{~V}\left(\mathrm{~m}^{3}\right)} \quad$ OR $\quad \mathrm{CD}(\mathrm{mg} / \mathrm{L})=\frac{\mathrm{C}(\mathrm{kg})}{\mathrm{V}(\mathrm{ML})}$
$\mathrm{CD}=$ rate of chlorine applied (mg/L)
$\mathrm{C}=$ weight of chlorine added (kg)
$\mathrm{V}=$ volume of water treated (m^{3} or ML depending on formula used)

FILTER LOADING RATE

Filter Loading Rate $=\quad \mathrm{Q}\left(\mathrm{m}^{3} / \mathrm{d}\right) \times 0.0116$
($\mathrm{L} / \mathrm{m}^{2} \mathrm{Xs}$)

A
$\mathrm{Ci}=$ concentration in the influent
$\mathrm{Ce}=$ concentration in the effluent

Note: If flow rate Q is in L / s then the equation is:
Filter Loading Rate $=$

Q (L/s)
 A

FILTER BACKWASH RATE

Method 1. Filter Backwash Rate $=\mathrm{Q}$
($\mathrm{L} / \mathrm{m}^{2} \mathrm{Xs}$) A
Method 2. Filter Backwash Rate $=\underline{R}$
$\mathrm{Q}=$ rate of upflow of backwash water (L/s)
$A=$ surface area of filter $\left(\mathrm{m}^{2}\right)$
$\mathrm{R}=$ water rise (m)
$\mathrm{T}=$ time (h)
CHEMICAL FEEDING
Chemical Feed Rate $=\quad \frac{\mathrm{D} \mathrm{x} \mathrm{Q}}{\mathrm{c} \times \mathrm{dx} 1440}$
$(\mathrm{ml} / \mathrm{min})$
$\mathrm{D}=$ chemical dosage (mg / L)
$\mathrm{Q}=$ flow rate $\left(\mathrm{m}^{3} / \mathrm{d}\right)$
$\mathrm{c}=\%$ active chemical expressed as a decimal
$d=$ relative density of chemical feed $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$

ORGANIC LOADING

Organic loading of an aeration tank refers to the daily mass of BOD entering the aeration tank volume.
Organic Loading $\left(\mathrm{kg} \mathrm{BOD} / \mathrm{m}^{3} \mathrm{Xd}\right)=\underset{\mathrm{V} \times 1000}{ } \quad \mathrm{Qx} \mathrm{C} \quad \begin{aligned} & \mathrm{Q}=\text { flow of settled sewage to aeration } \operatorname{tank}\left(\mathrm{m}^{3} / \mathrm{d}\right) \\ & \mathrm{C}=\text { concentration of BOD in settled sewage }(\mathrm{mg} / \mathrm{L})\end{aligned}$
$\mathrm{C}=$ concentration of BOD in settled sewage (mg / L)
$\mathrm{V}=$ volume of aeration tank $\left(\mathrm{m}^{3}\right)$

Note: the same formula can be used for the organic loading to a trickling filter.

SLUDGE VOLUME INDEX

$\mathrm{SVI}=\quad$ volume of settled sludge $(\mathrm{mL}) \times 1000$
MLSS (mg/L)
$\mathrm{SVI}=\quad$ volume of settled sludge (\%) mixed liquor suspended solids (\%)

	$\mathrm{SDI}=\frac{100}{\mathrm{SVI}}$	SVI = sludge volume index
F/M RAT1O		
F ratio M	$\begin{aligned} & =\frac{\mathrm{BOD}_{5} \mathrm{~kg}}{\mathrm{MLVSS}_{\mathrm{kg}}} \\ & =\frac{\mathrm{QxB}}{\mathrm{VxVSS}} \end{aligned}$	
RECYCLE RATE		
$\mathrm{Q}_{\mathrm{R}}=$	$\frac{\mathrm{Q}_{\mathrm{E}} \mathrm{x} \text { MLSS }}{\text { RSSS-MLSS }}$	$\mathrm{Q}_{\mathrm{R}}=$ return or recycle sludge flow rate $\left(\mathrm{m}^{3} / \mathrm{d}\right)$ $\mathrm{Q}_{\mathrm{E}}=$ effluent flow rate $\left(\mathrm{m}^{3} / \mathrm{d}\right)$ (may be assumed to equal influent flow rate) MLSS = mixed liquor suspended solids (mg/L) RSSS $=$ return or recycle sludge suspended solids (mg / L)

F/M RATIO

	$\mathrm{SDI}=\frac{100}{\mathrm{SVI}}$	SVI = sludge volume index
F/M RAT1O		
F ratio M	$\begin{aligned} & =\frac{\mathrm{BOD}_{5} \mathrm{~kg}}{\mathrm{MLVSS}_{\mathrm{kg}}} \\ & =\frac{\mathrm{QxB}}{\mathrm{VxVSS}} \end{aligned}$	
RECYCLE RATE		
$\mathrm{Q}_{\mathrm{R}}=$	$\frac{\mathrm{Q}_{\mathrm{E}} \mathrm{x} \text { MLSS }}{\text { RSSS-MLSS }}$	$\mathrm{Q}_{\mathrm{R}}=$ return or recycle sludge flow rate $\left(\mathrm{m}^{3} / \mathrm{d}\right)$ $\mathrm{Q}_{\mathrm{E}}=$ effluent flow rate $\left(\mathrm{m}^{3} / \mathrm{d}\right)$ (may be assumed to equal influent flow rate) MLSS = mixed liquor suspended solids (mg/L) RSSS $=$ return or recycle sludge suspended solids (mg / L)

RECYCLE RATE

$\mathrm{Q}_{\mathrm{R}}=\quad \mathrm{Q}_{\mathrm{E}} \times \underset{\mathrm{XSLSS}}{ }$
RSSS-MLSS

MLSS $=$ mixed liquor suspended solids (mg/L)

SLUDGE DENSITY INDEX

SOLIDS RETENTION TIME (or Mean Cell Residence Time)

Solids Retention Time (SRT) or Mean Cell Retention Time (MCRT) is the length of time that biological solids are held within a process. SRT and MCRT is stated in days.
$\mathrm{MCRT}=\quad\left(\mathrm{V}_{\mathrm{A}} \times \mathrm{MLSS}\right)+\left(\mathrm{V}_{\mathrm{C}} \times \mathrm{MLSS}\right)$

SRT	$=$ solids retention time in days
V_{A}	$=$ volume of aeration tank $(\mathrm{s})\left(\mathrm{m}^{3}\right)$
V_{C}	$=$ volume of final settling tank $\left(\mathrm{m}^{3}\right)$
Q_{W}	$=$ daily waste sludge flow $\left(\mathrm{m}^{3} / \mathrm{d}\right)$
Q_{E}	$=$ effluent (or influent) flow $\left(\mathrm{m}^{3} / \mathrm{d}\right)$
MLSS	$=$ mixed liquor suspended solids $(\mathrm{mg} / \mathrm{L})$
WSSS	$=$ waste sludge suspended solids $(\mathrm{mg} / \mathrm{L})$
FESS	$=$ final effluent suspended solids $(\mathrm{mg} / \mathrm{L})$

SRT $=$ \qquad
$\left(\mathrm{Q}_{\mathrm{w}} \times \mathrm{WSSS}\right)+\left(\mathrm{Q}_{\mathrm{E}} \times \mathrm{FESS}\right)$

SLUDGE WASTING

Waste Sludge Rate Required $=\frac{\left(\mathrm{M}_{1}-\mathrm{M}_{2}\right) \times \mathrm{V}}{\mathrm{R}}$
$\mathrm{M}_{1}=$ present MLSS (mg/L)
$\mathrm{M}_{2}=$ desired MLSS (mg/L)
$\mathrm{V}=$ volume of aeration tank $\left(\mathrm{m}^{3}\right)$
$\mathrm{R}=$ suspended solids in sludge recycle or return (mg / L)

RESPIRATION RATES

Oxygen Uptake Rate or Specific Uptake Rate (SUR)
Oxygen Uptake Rate $\left(\mathrm{mgO}_{2} / \mathrm{LXh}\right)=$
$\left(\mathrm{DO}_{1}-\mathrm{DO}_{2}\right) \times 60$ T

Specific Uptake Rate
$=\mathrm{SUR}\left(\mathrm{mgO}_{2} / \mathrm{hXg}\right.$ MLVSS $)$
$=$ Oxygen Uptake Rate x 1000 MLVSS (mg/L)
$\mathrm{DO}_{1}=$ dissolved oxygen in mixed liquor sample at start of test (mg/L)
$\mathrm{DO}_{2}=$ dissolved oxygen in mixed liquor sample at end of test (mg/L0
$\mathrm{T}=$ duration of the test (min.)

Oxygen Uptake Rate $=$ rate of oxygen utilization $\left(\mathrm{mgO}_{2} / \mathrm{L}!\mathrm{h}\right)$

MLVSS $=$ mixed liquor volatile suspended solids (mg / L)

DIGESTER LOADING (volatile solids)

Loading $(\mathrm{kg} / \mathrm{m} 3 \mathrm{Xd})=$

$$
\frac{\mathrm{C} \times \mathrm{P} \times \mathrm{Q}}{\mathrm{~V} \times 10}
$$

$\mathrm{C}=$ concentration of solids in sludge feed (\%)
$\mathrm{P}=$ concentration of volatile solids in sludge feed (\%)
$\mathrm{Q}=$ volume of sludge feed $\left(\mathrm{m}^{3} / \mathrm{d}\right)$
$\mathrm{V}=$ volume of digester $\left(\mathrm{m}^{3}\right)$

REDUCTION OF VOLATILE SOLIDS IN DIGESTER

Reduction $(\%)=\left(\mathrm{P}_{\mathrm{I}}-\mathrm{P}_{\mathrm{D}}\right) \times 100$
$\mathrm{P}_{\mathrm{I}}-\left(\mathrm{P}_{\mathrm{I}} \times \mathrm{P}_{\mathrm{D}}\right)$
$\mathrm{P}_{\mathrm{D}}=$ volatile matter in digested sludge (\%)
$\mathrm{P}_{\mathrm{I}}=$ volatile matter in feed (raw) sludge (\%)

FILTER YIELD (VACUUM)

Yield $\left(\mathrm{kg} / \mathrm{m}^{2} \mathrm{Xh}\right)=\frac{(\mathrm{C} / 100) \mathrm{x} \mathrm{Q}}{\mathrm{A}}$
$\mathrm{C}=$ concentration of solids in sludge feed (\%)
$\mathrm{Q}=$ sludge feed rate to filter (L/h)
$A=$ surface area of filter $\left(\mathrm{m}^{2}\right)$
(This formula assumes there are no solids in the filtrate and the specific gravity of sludge is equal to water.)

POWER CALCULATIONS

$\text { Water Power }(\mathrm{kW})=\frac{\mathrm{Q} \times \mathrm{H}}{6125}$	$\begin{aligned} & \mathrm{Q}=\text { rate of flow }(\mathrm{L} / \mathrm{min}) \\ & \mathrm{H}=\text { head of water }(\mathrm{m}) \end{aligned}$
	(This equation assumes 100% motor and pump efficiency)
$\text { Water Horsepower }(\mathrm{Hp})=\frac{\mathrm{Q} \times \mathrm{H}}{4570}$	
$\text { Motor Power }(\mathrm{kW})=\frac{\mathrm{Q} \times \mathrm{H}}{6125}=\frac{\text { Water Power }}{\text { Pump Effic. }}=\frac{\text { Brake Power }}{\text { Motor Effic. }}$	This equation does not assume 100% motor or pump efficiency. A pump efficiency of $100 \%=1$ A motor efficiency of $100 \%=1$
HYPOCHLORITE SOLUTIONS	
Amount of Hypochlorite needed $=$ Strength of solution (\%) x Volume of solution Strength of Hypochlorite available (\%)	Strength of solution $=$ Strength of solution you need (\%) Volume of solution $=$ Volume of solution you are making up

