Formula/Conversion Table

Wastewater Treatment, Collection, Industrial Waste, & Wastewater Laboratory Exams

Alkalinity, mg/L as $CaCO_3 = \frac{(Titrant\ Volume,\ mL)(Acid\ Normality)(50,000)}{Sample\ Volume,\ mL}$

$$\mathbf{Amps} = \frac{\mathbf{Volts}}{\mathbf{Ohms}}$$

Area of Circle* = (0.785)(Diameter²)

Area of Circle = $(3.14)(Radius^2)$

Area of Cone (lateral area) = $(3.14)(\text{Radius}) \sqrt{\text{Radius}^2 + \text{Height}^2}$

Area of Cone (total surface area) = $(3.14)(Radius)(Radius + \sqrt{Radius^2 + Height^2})$

Area of Cylinder (total exterior surface area) = [End #1 SA] + [End #2 SA] + [(3.14)(Diameter)(Height or Depth)]Where SA = surface area

Area of Rectangle* = (Length)(Width)

Area of Right Triangle* = $\frac{\text{(Base)(Hei ght)}}{2}$

Average (arithmetic mean) = $\frac{\text{Sum of All Terms}}{\text{Number of Terms}}$

Average (geometric mean) = $[(X_1)(X_2)(X_3)(X_4)(X_n)]^{1/n}$

The nth root of the product of n numbers

Biochemical Oxygen Demand (seeded), mg/L =

 $\frac{\hbox{[(Initial\ DO,\ mg/L)\ -(Final\ DO,\ mg/L)\ -(Seed\ Correction\ ,\ mg/L)]\ [300\ mL]}}{\hbox{Sample\ Volume,\ mL}}$

 $\begin{aligned} \textbf{Biochemical Oxygen Demand (unseeded), mg/L} &= \frac{[(Initial\ DO,\ mg\ /\ L) - (Final\ DO,\ mg\ /\ L)][300\ mL]}{Sample\ Volume,\ mL} \end{aligned}$

Blending or Three Normal Equation = $(C_1 \times V_1) + (C_2 \times V_2) = (C_3 \times V_3)$ Where $V_1 + V_2 = V_3$; C = concentration, $V = volume \ or \ flow$; Concentration units must match; Volume units must match

CFU/100mL = $\frac{[(\text{# of Colonies on Plate})(100)]}{\text{Sample Volume, mL}}$

Chemical Feed Pump Setting, % Stroke = $\frac{\text{Desired Flow}}{\text{Maximum Flow}} \times 100\%$

Chemical Feed Pump Setting, mL/min =

(Flow,MGD)(Dose,mg/L)(3.785 L/gal)(1,000,000 gal/MG)

(Feed Chemical Density, mg/mL)(Active Chemical, % expressed as a decimal)(1,440 min/day)

(Flow,m³/day)(Dose mg/L)

(Feed Chemical Density, g/cm³) (Active Chemical, % expressed as a decimal) (1,440 min/day)

Circumference of Circle = (3.14)(Diameter)

 $\textbf{Cycle Time, min} = \frac{\text{Storage Volume, gal}}{(\text{Pump Capacity, gpm}) - (\text{Wet Well Inflow, gpm})}$

 $\label{eq:cycle Time, min} \textbf{Cycle Time, min} = \frac{StorageVolume, m^3}{(Pump \, Capacity, m^3/min) - (Wet \, WellInflow, m^3/min)}$

Degrees Celsius = $\frac{(°F - 32)}{1.8}$

Degrees Fahrenheit = $(^{\circ}C)(1.8) + 32$

Detention Time = $\frac{\text{Volume}}{\text{Flow}}$ *Units must be compatible*

Dilution or Two Normal Equation = $(C_1 \times V_1) = (C_2 \times V_2)$

Where C = Concentration, V = volume or flow; Concentration units must match; Volume units must match

Electromotive Force, volts* = (Current, amps)(Resistance, ohms)

 $\label{eq:feed_rate_power} \textbf{Feed Rate, lb/day*} = \frac{(Dosage, \ mg/L)(Flow \ , MGD)(8.34 \ lb/gal)}{Purity, \% \ expressed \ as \ a \ decimal}$

Feed Rate, kg/day* = $\frac{\text{(Dosage,mg/L)(Flow Rate, m}^3/\text{day})}{\text{(Purity,% expressed as a decimal)(1,000)}}$

Filter Backwash Rate, $gpm/ft^2 = \frac{Flow, gpm}{Filter Area, ft^2}$

Filter Backwash Rate, L/sec/m² = $\frac{\text{Flow, L/sec}}{\text{Filter Area, m}^2}$

Filter Backwash Rise Rate, in/min = $\frac{(BackwashRate, gpm/ft^2)(12 in/ft)}{7.48 gal/ft^3}$

Filter Backwash Rise Rate, cm/min = $\frac{\text{Water Rise, cm}}{\text{Time, min}}$

Filter Yield, $lb/hr/ft^2 = \frac{(Solids\ Loading,\ lb/day)(Recovery, \%\ expressed\ as\ a\ decimal)}{(Filter\ Operation,\ hr/day)(Area,\ ft^2)}$

 $Filter Yield, kg/hr/m^2 = \frac{\text{(Solids Concentration, \% expressed as a decimal)(S ludge Feed Rate, L/hr)(10)}{\text{(Surface Area of Filter, m}^2)}$

Flow Rate, ft³/sec* = (Area, ft²)(Velocity, ft/sec)

Flow Rate, $m^3/sec^* = (Area, m^2)(Velocity, m/sec)$

Food/Microorganism Ratio = $\frac{BOD_5, lb/day}{MLVSS, lb}$

 $\textbf{Food/Microorganism Ratio} = \frac{BOD_5, kg/day}{MLVSS, kg}$

Force, lb* = (Pressure, psi)(Area, in²)

Force, newtons* = (Pressure, pascals)(Area, m²)

Hardness, as mg $CaCO_3/L = \frac{(Titrant\ Volume,\ mL)(1,000)}{Sample\ Volume,\ mL}$ Only when the titration factor is 1.00 of EDTA

Horsepower, Brake, hp = $\frac{\text{(Flow, gpm)(Head, ft)}}{(3,960)(\text{Pump Efficiency, % expressed as a decimal)}}$

Horsepower, Brake, kW = $\frac{(9.8)(\text{Flow, m}^3/\text{sec})(\text{Head m})}{(\text{Pump Efficiency, \% expressed as a decimal})}$

Horsepower, **Motor**, **hp** =

(Flow, gpm)(Head, ft)

(3,960)(Pump Efficiency, % expressed as a decimal)(Motor Efficiency, % expressed as a decimal)

Horsepower, Motor, kW =

(9.8)(Flow, m³/se¢)(Head, m)

(Pump Efficiency, % expressed as a decimal) (Motor Efficiency, % expressed as a decimal)

Horsepower, Water, hp = $\frac{(Flow, gpm)(Head, ft)}{3.960}$

Horsepower, Water, kW = (9.8)(Flow, m³/sec)(Head, m)

Hydraulic Loading Rate, gpd/ft^2 = \frac{Total Flow Applied, gpd $}{Area, ft^2}$

Hydraulic Loading Rate, $m^3/day/m^2 = \frac{TotalFlow Applied, m^3/day}{Area, m^2}$

Loading Rate, lb/day* = (Flow, MGD)(Concentration, mg/L)(8.34 lb/gal)

Loading Rate, kg/day* = $\frac{\text{(Flow, m}^3/\text{day)}\text{(Concentration, mg/L)}}{1,000}$

Mass, lb* = (Volume, MG)(Concentration, mg/L)(8.34 lb/gal)

Mass, $kg* = \frac{(Volume, m^3)(Concentration, mg/L)}{1,000}$

Milliequivalent = (mL)(Normality)

$$Molarity = \frac{Moles of Solute}{Liters of Solution}$$

Motor Efficiency,
$$\% = \frac{\text{Brake hp}}{\text{Motor hp}} \times 100\%$$

$$\begin{aligned} \textbf{Normality} = \frac{Number of \ EquivalentWeights of \ Solute}{Liters \ of \ Solution} \end{aligned}$$

Number of Equivalent Weights =
$$\frac{\text{Total Weight}}{\text{Equivalent Weight}}$$

Organic Loading Rate-RBC, lb SBOD₅/day/1,000 ft² =
$$\frac{\text{Organic Load, lb SBOD}_{5}/\text{day}}{\text{Surface Area of Media, 1,000 ft}^{2}}$$

Organic Loading Rate-RBC, kg SBOD₅/m² days =
$$\frac{\text{Organic Load, kg SBOD}_{5}/\text{day}}{\text{Surface Area of Media, m}^{2}}$$

Organic Loading Rate-Trickling Filter, lb BOD₅/day/1,000 ft³ =
$$\frac{\text{Organic Load, lb BOD}_5/\text{day}}{\text{Volume, 1,000 ft}^3}$$

Oxygen Uptake Rate or Oxygen Consumption Rate,
$$mg/L/min = \frac{Oxygen Usage, mg/L}{Time, min}$$

Population Equivalent, Organic =
$$\frac{(Flow, MGD)(BOD, mg/L)(8.34 \text{ lb/gal})}{0.17 \text{ lb BOD/day/person}}$$

$$\textbf{Population Equivalent, Organic} = \frac{(Flow, m^3 \, / \, day)(BOD, mg \, / \, L)}{(1,000)(0.077 \, \, kg \, \, BOD/day/person)}$$

Power,
$$\mathbf{kW} = \frac{(\text{Flow, L/sec})(\text{Hea d, m})(9.8)}{1.000}$$

Reduction of Volatile Solids, % =
$$\left(\frac{\text{VS in} - \text{VS out}}{\text{VS in} - \left(\text{VS in} \times \text{VS out}\right)}\right) \times 100\%$$

All a must

All information (In and Out) must be in decimal form

^{*}Pie Wheel Format for this equation is available at the end of this document

Removal, % =
$$\left(\frac{\text{In} - \text{Out}}{\text{In}}\right) \times 100\%$$

Return Rate, % =
$$\frac{\text{Return Flow Rate}}{\text{Influent Flow Rate}} \times 100\%$$

Return Sludge Rate-Solids Balance,
$$MGD = \frac{(MLSS, mg/L)(Flow Rate, MGD)}{(RAS Suspended Solids, mg/L) - (MLSS, mg/L)}$$

Slope, % =
$$\frac{\text{Drop or Rise}}{\text{Distance}} \times 100\%$$

Sludge Density Index =
$$\frac{100}{SVI}$$

Solids, mg/L =
$$\frac{\text{(Dry Solids, g)}(1,000,000)}{\text{Sample Volume, mL}}$$

$$\textbf{Solids Capture, \% (Centrifuges)} = \left[\frac{\text{Cake TS, \%}}{\text{Feed Sludge TS, \%}}\right] \times \left[\frac{\left(\text{Feed Sludge TS, \%}\right) - \left(\text{Centrate TSS, \%}\right)}{\left(\text{Cake TS, \%}\right) - \left(\text{Centrate TSS, \%}\right)}\right] \times 100\%$$

Solids Concentration,
$$mg/L = \frac{Weight, mg}{Volume, L}$$

Solids Loading Rate,
$$lb/day/ft^2 = \frac{Solids Applied, lb/day}{Surface Area, ft^2}$$

Solids Loading Rate,
$$kg/day/m^2 = \frac{Solids Applied, kg/day}{Surface Area, m^2}$$

Solids Retention Time: see Mean Cell Residence Time

$$\textbf{Specific Gravity} = \frac{\text{Specific Weight of Substance, lb/gal}}{8.34 \text{ lb/gal}}$$

$$\textbf{Specific Gravity} = \frac{\text{Specific Weight of Substance, kg/L}}{1.0 \text{ kg/L}}$$

Specific Oxygen Uptake Rate or Respiration Rate,
$$(mg/g)/hr = \frac{(OUR, mg/L/min) (60 min)}{(MLVSS, g/L) (1 hr)}$$

Surface Loading Rate or Surface Overflow Rate,
$$gpd/ft^2 = \frac{Flow, gpd}{Area, ft^2}$$

Surface Loading Rate or Surface Overflow Rate,
$$Lpd/m^2 = \frac{Flow, Lpd}{Area, m^2}$$

Total Solids, % =
$$\frac{\text{(Dried Weight, g) - (Tare Weight, g)}}{\text{(Wet Weight, g) - (Tare Weight, g)}} \times 100\%$$

Velocity, ft/sec =
$$\frac{\text{Flow Rate,ft}^3 / \text{sec}}{\text{Area,ft}^2}$$

Velocity, ft/sec =
$$\frac{\text{Distance, ft}}{\text{Time, sec}}$$

Velocity, m/sec =
$$\frac{Flow Rate, m^3 / sec}{Area, m^2}$$

Velocity, m/sec =
$$\frac{\text{Distance, m}}{\text{Time, sec}}$$

Volatile Solids, % =
$$\left[\frac{(\text{Dry Solids}, g) - (\text{Fixed Solids}, g)}{(\text{Dry Solids}, g)} \right] \times 100\%$$

Volume of Cone* = (1/3)(0.785)(Diameter²)(Height)

Volume of Cylinder* = (0.785)(Diameter²)(Height)

Volume of Rectangular Tank* = (Length)(Width)(Height)

Water Use,
$$\mathbf{gpcd} = \frac{\text{Volume of Water Produced, gpd}}{\text{Population}}$$

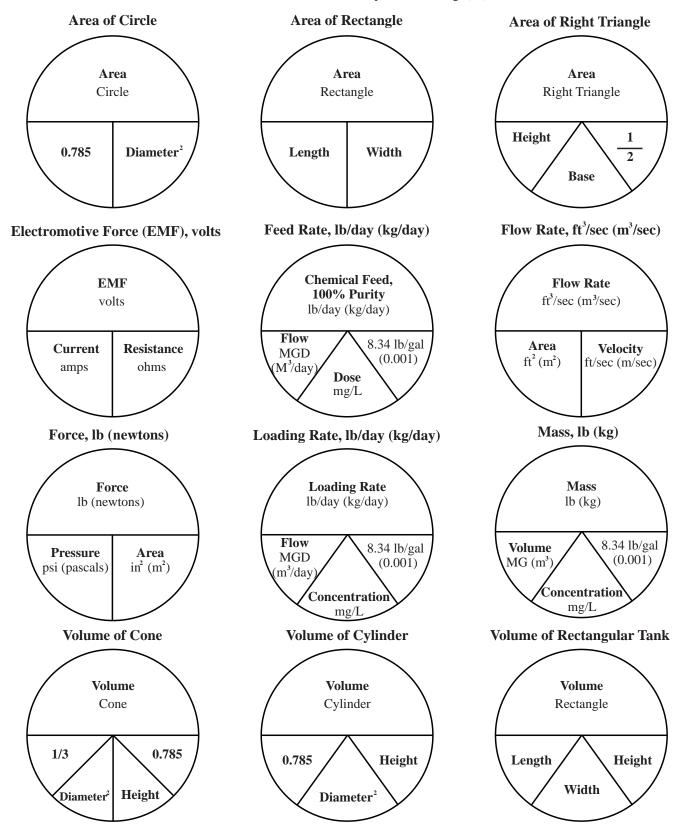
Water Use,
$$Lpcd = \frac{Volume \text{ of Water Produced, } Lpd}{Population}$$

Watts (AC circuit) = (Volts)(Amps)(Power Factor)

Watts (DC circuit) = (Volts)(Amps)

Weir Overflow Rate,
$$gpd/ft = \frac{Flow, gpd}{Weir Length, ft}$$

Weir Overflow Rate,
$$Lpd/m = \frac{Flow, Lpd}{Weir Length, m}$$


$$\textbf{Wire-to-Water Efficiency, \%} = \frac{Water \ hp}{M \ otor \ hp} \times 100\%$$

Wire-to-Water Efficiency, % =
$$\frac{(Flow, gpm)(TotalDynamicHead, ft)(0.746 \text{ kW/hp})(100\%)}{(3,960)(ElectricalDemand, kW)}$$

Abbreviations

Abbreviati			
	atmospheres	mg	milligrams
	biochemical oxygen demand	MG	million US gallons
	Celsius		million US gallons per day
	carbonaceous biochemical oxygen demand		
	cubic feet per second	mL	
	centimeters	ML	
	chemical oxygen demand		million liters per day
O	dissolved oxygen		mixed liquor suspended solids
	electromotive force		mixed liquor volatile suspended solids
	Fahrenheit		oxygen consumption rate
	food to microorganism ratio		oxidation reduction potential
			oxygen uptake rate
	foot-pound		population equivalent
		ppb	parts per billion
	US gallons	ppm	parts per million
	US gallons flux per day		pounds per square inch
	US gallons per capita per day	Q	
	US gallons per day		return activated sludge
	grains per US gallon		rotating biological contactor
	US gallons per minute		revolutions per minute
	horsepower	SBOD ₅	
•			sludge density index
	inches	sec	
	kilograms		specific oxygen uptake rate solids retention time
	kilometer		
	kilopascals	SS	
	kilowatts		settled sludge volume 30 minute
	kilowatt-hours		sludge volume index
		TS	total organic carbon
	pounds		
	liters per capita per dayliters per day	VS	total suspended solids
	liters per day		volatile solids
	Langelier Saturation Index	W	_
)			waste activated sludge
	mean cell residence time	yd	
1CK1	mean cen residence time	yr	-
		y1	ycu
Conversion			
acre	$= 43,560 \text{ ft}^2$		= 2.54 cm
	$= 4,046.9 \text{ m}^2$	1 liter per secon	$\mathbf{d} \dots = 0.0864 \text{ MLD}$
acre foot o	of water = 326,000 gal	1 meter of water	r = 9.8 kPa
	= 33.9 ft of water		= 2,205 lb
	= 10.3 m of water		= 1,000 kg
	= 14.7 psi	1 mile	= $5,280 \text{ ft}$
	= 101.3 kPa		= 1.61 km
cubic foot	of water = 7.48 gal	1 million US gal	llons per day = 694 gpm
	= 62.4 lb		$= 1.55 \text{ ft}^3/\text{sec}$
cubic foot	per second = 0.646 MGD	1 nound	= 1.35 ft /sec = 0.454 kg
cabic foot	= 448.8 gpm		uare inch = 2.31 ft of water
cubic moto	er of water = 1,000 kg	r pound per squ	= 6.89 kPa
canic illete	<u> </u>	1 garana mata-	2
	= 1,000 L		$= 1.19 \text{ yd}^2$
C4	= 264 gal		= 2,000 lb
	= 0.305 m		$\dots = 10,000 \text{ mg/L}$
	ter = 0.433 psi		= 3.14
	5) = 3.785 L	Population Equi	
gallon (US)		hydraulic	= 100 gal/person/day
	= 8.34 lb of water	ny aradic	
	= 8.34 lb of water US gallon = 17.1 mg/L	ny draune	= 378.5 L/person/day
grain per U		•	ž , , , , , , , , , , , , , , , , , , ,
grain per U	US gallon = 17.1 mg/L	Population Equi	ivalent,
grain per U	US gallon = 17.1 mg/L = 10,000 m ²	Population Equi	ž ,

- To find the quantity above the horizontal line: multiply the pie wedges below the line together.
- To solve for one of the pie wedges below the horizontal line: cover that pie wedge, then divide the remaining pie wedge(s) into the quantity above the horizontal line.
- Given units must match the units shown in the pie wheel.
- When US and metric units or values differ, the metric is shown in parentheses, e.g. (m²).

^{*}Pie Wheel Format for this equation is available at the end of this document