Formula/Conversion Table

Water Treatment, Distribution, & Water Laboratory Exams

Alkalinity, mg/L as
$$CaCO_3 = \frac{(Titrant\ Volume,\ mL)(Acid\ Normality)(50,000)}{Sample\ Volume,\ mL}$$

$$Amps = \frac{Volts}{Ohms}$$

Area of Circle* = (0.785)(Diameter²)

Area of Circle = (3.14)(Radius²)

Area of Cone (lateral area) = $(3.14)(\text{Radius})\sqrt{\text{Radius}^2 + \text{Height}^2}$

Area of Cone (total surface area) = $(3.14)(\text{Radius})(\text{Radius} + \sqrt{\text{Radius}^2 + \text{Height}^2})$

Area of Cylinder (total exterior surface area) = [End #1 SA] + [End #2 SA] + [(3.14)(Diameter)(Height or Depth)]Where SA = surface area

Area of Rectangle* = (Length)(Width)

Area of Right Triangle* =
$$\frac{\text{(Base)(Height)}}{2}$$

Average (arithmetic mean) = $\frac{\text{Sum of All Terms}}{\text{Number of Terms}}$

Average (geometric mean) = $[(X_1)(X_2)(X_3)(X_4)(X_n)]^{1/n}$ The nth root of the product of n numbers

 $\textbf{Blending} = (V_1)(C_1) + (V_2)(C_2) = (V_3)(C_3) \qquad \qquad \textit{Where V = volume or flow, C = concentration or percent solution}$

Chemical Feed Pump Setting, % Stroke = $\frac{\text{Desired Flow}}{\text{Maximum Flow}} \times 100\%$

Chemical Feed Pump Setting, mL/min = $\frac{(Flow, MGD)(Dose, mg/L)(3.785 \text{ L/gal})(1,000,000 \text{ gal/MG})}{(Feed Chemical Density, mg/mL)(1,440 \text{ min/day})}$

Chemical Feed Pump Setting, mL/min =

(Flow, m³/day)(Dose, mg/L)

(Feed Chemical Density, g/cm³)(Active Chemical, % expressed as a decimal)(1,440 min/day)

Circumference of Circle = (3.14)(Diameter)

CT Calculation = (Disinfectant Residual Concentration, mg/L)(Time, min)

Degrees Celsius =
$$\frac{(\circ F - 32)}{1.8}$$

^{*}Pie Wheel Format for this equation is available at the end of this document

Degrees Fahrenheit = $(^{\circ}C)(1.8) + 32$

Detention Time =
$$\frac{\text{Volume}}{\text{Flow}}$$
 Units must be compatible

Electromotive Force, volts* = (Current, amps)(Resistance, ohms)

Feed Rate,
$$lb/day* = \frac{(Dosage, mg/L)(Flow, MGD)(8.34 lb/gal)}{Purity, % expressed as a decimal}$$

Feed Rate, kg/day* =
$$\frac{\text{(Dosage, mg/L)(Flow Rate, m}^3/\text{day})}{\text{(Purity, % expressed as a decimal)(1,000)}}$$

Feed Rate (Fluoride), lb/day =

(Available Fluoride Ion, % expressed as a decimal)(Purity, % expressed as a decimal)

Feed Rate (Fluoride), kg/day =

(Available Fluoride Ion, % expressed as a decimal)(Purity, % expressed as a decimal)(1,000)

$$\textbf{Feed Rate (Fluoride Saturator), gpm} = \frac{(Plant \ capacity, gpm)(Dosage, mg/L)}{18,000 \ mg/L}$$

$$\textbf{Feed Rate (Fluoride Saturator), Lpm} = \frac{(Plant \, capacity, Lpm)(Dosage, mg/L)}{18,000 \, mg/L}$$

$$\textbf{Filter Backwash Rise Rate, in/min} = \frac{(Backwash \, Rate, gpm/ft^2)(12 \, in/ft)}{7.48 \, gal/ft^3}$$

Filter Backwash Rise Rate,
$$cm/min = \frac{Water Rise, cm}{Time, min}$$

$$\textbf{Filter Drop Test Velocity, ft/min} = \frac{Water Drop, ft}{Time of Drop, min}$$

Filter Drop Test Velocity,
$$m/min = \frac{Water Drop, m}{Time of Drop, min}$$

Filter Loading Rate,
$$gpm/ft^2 = \frac{Flow, gpm}{Filter area, ft^2}$$

Filter Loading Rate, L/sec/m² =
$$\frac{\text{Flow, L/sec}}{\text{Filter area, m}^2}$$

Filter Yield,
$$lb/hr/ft^2 = \frac{(Solids Loading, lb/day)(Recovery, % expressed as a decimal)}{(Filter Operation, hr/day)(Area, ft^2)}$$

Filter Yield,
$$kg/hr/m^2 = \frac{\text{(Solids Concentration, \% expressed as a decimal)(Sludge Feed Rate, L/hr)(10)}{\text{(Surface Area of Filter, m}^2)}$$

Flow Rate, ft³/sec* = (Area, ft²)(Velocity, ft/sec)

Flow Rate, m³/sec* = (Area, m²)(Velocity, m/sec)

Force, lb* = (Pressure, psi)(Area, in²)

Force, newtons* = (Pressure, pascals)(Area, m²)

Hardness, as mg $CaCO_3/L = \frac{(Titrant\ Volume, mL)(1,000)}{Sample\ Volume, mL}$ Only when the titration factor is 1.00 of EDTA

Horsepower, Brake, $hp = \frac{(Flow, gpm)(Head, ft)}{(3,960)(Pump Efficiency, % expressed as a decimal)}$

Horsepower, Brake, kW = $\frac{(9.8)(\text{Flow, m}^3/\text{sec})(\text{Head, m})}{(\text{Pump Efficiency, % expressed as a decimal})}$

Horsepower, Motor, hp =

(Flow, gpm)(Head, ft)

(3,960)(Pump Efficiency, % expressed as a decimal)(Motor Efficiency, % expressed as a decimal)

Horsepower, Motor, kW =

(9.8)(Flow, m 3 /sec)(Head, m)

(Pump Efficiency, % expressed as a decimal)(Motor Efficiency, % expressed as a decimal)

Horsepower, Water, $hp = \frac{(Flow,gpm)(Head,ft)}{3.960}$

Horsepower, Water, $kW = (9.8)(Flow, m^3/sec)(Head, m)$

Hydraulic Loading Rate, $gpd/ft^2 = \frac{Total Flow Applied, gpd}{Area, ft^2}$

Hypochlorite Strength, % = Chlorine Required, lb (Hypochlorite Solution Needed, gal)(8.34 lb/gal)

Hypochlorite Strength, % = $\frac{\text{(Chlorine Required, kg)(100)}}{\text{(Hypochlorite Solution Needed, kg)}}$

Langelier Saturation Index = pH - pHs

 $\textbf{Leakage, gpd} = \frac{Volume, gal}{Time, days}$

 $\textbf{Leakage, Lpd} = \frac{Volume, L}{Time, days}$

Loading Rate, lb/day* = (Flow, MGD)(Concentration, mg/L)(8.34 lb/gal)

Loading Rate, kg/day* =
$$\frac{\text{(Volume, m}^3/\text{day)}(\text{Concentration, mg/L})}{1,000}$$

Mass, lb* = (Volume, MG)(Concentration, mg/L)(8.34 lb/gal)

Mass,
$$kg^* = \frac{\text{(Volume,m}^3)\text{(Concentration, mg/L)}}{1,000}$$

Milliequivalent = (mL)(Normality)

$$Molarity = \frac{Moles of Solute}{Liters of Solution}$$

$$Normality = \frac{Number of Equivalent Weights of Solute}{Liters of Solution}$$

$$\textbf{Number of Equivalent Weights} = \frac{Total Weight}{Equivalent Weight}$$

$$Number of Moles = \frac{Total Weight}{Molecular Weight}$$

Power,
$$\mathbf{kW} = \frac{(Flow, L/sec)(Head, m)(9.8)}{1,000}$$

Reduction in Flow,
$$\% = \frac{\text{(Original Flow - Reduced Flow)(100\%)}}{\text{Original Flow}}$$

Removal, % =
$$\frac{\text{In} - \text{Out}}{\text{In}} \times 100\%$$

Slope, % =
$$\frac{\text{Drop or Rise}}{\text{Distance}} \times 100\%$$

Solids, mg/L =
$$\frac{\text{(Dry Solids, g)(1,000,000)}}{\text{Sample Volume, mL}}$$

Solids Concentration,
$$mg/L = \frac{Weight, mg}{Volume, L}$$

$$\textbf{Specific Gravity} = \frac{\text{Specific Weight of Substance, 1b/gal}}{8.34 \, \text{lb/gal}}$$

$$\label{eq:Specific Gravity} \textbf{Specific Weight of Substance}, \ \frac{kg/L}{1.0, kg/L}$$

Surface Loading Rate or Surface Overflow Rate,
$$gpd/ft^2 = \frac{Flow, gpd}{Area, ft^2}$$

Surface Loading Rate or Surface Overflow Rate,
$$Lpd/m^2 = \frac{Flow, Lpd}{Area, m^2}$$

Three Normal Equation =
$$(C_1 \times V_1) + (C_2 \times V_2) = (C_3 \times V_3)$$
 Where $V_1 + V_2 = V_3$; C =concentration, V = volume or flow; Concentration units must match; Volume units must match

Threshold Odor Number =
$$\frac{A+B}{A}$$
 Where $A = volume \ of \ odor \ causing \ sample, $B = volume \ of \ odor \ free \ water$$

Two Normal Equation =
$$(C_1 \times V_1) = (C_2 \times V_2)$$
 Where $C = Concentration$, $V = volume$ or flow; Concentration units must match; Volume units must match

Velocity, ft/sec =
$$\frac{\text{Flow Rate, ft}^3/\text{sec}}{\text{Area, ft}^2}$$

Velocity, ft/sec =
$$\frac{Distance, ft}{Time, sec}$$

Velocity, m/sec =
$$\frac{\text{Flow Rate, m}^3 / \text{sec}}{\text{Area, m}^2}$$

Velocity, m/sec =
$$\frac{\text{Distance, m}}{\text{Time, sec}}$$

Volume of Cone* =
$$(1/3)(0.785)$$
(Diameter²)(Height)

Volume of Cylinder* =
$$(0.785)$$
(Diameter²)(Height)

Water Use,
$$gpcd = \frac{Volume \text{ of Water Produced, gpd}}{Population}$$

Water Use,
$$Lpcd = \frac{Volume \text{ of Water Produced, } Lpd}{Population}$$

Weir Overflow Rate,
$$gpd/ft = \frac{Flow, gpd}{Weir Length, ft}$$

Weir Overflow Rate, Lpd/m =
$$\frac{\text{Flow, Lpd}}{\text{Weir Length, m}}$$

Wire-to-Water Efficiency,
$$\% = \frac{\text{Water hp}}{\text{Motor hp}} \times 100\%$$

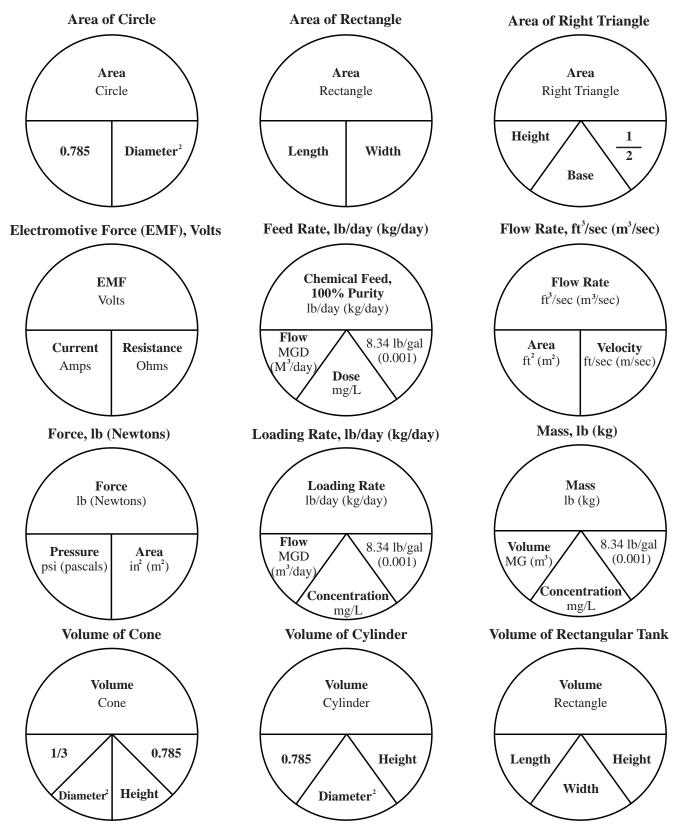
Wire-to-Water Efficiency,
$$\% = \frac{\text{(Flow, gpm)(Total Dynamic Head, ft)}(0.746 \text{ kW/hp)}(100 \%)}{(3,960)(\text{Electrical Demand, kW})}$$

Abbreviations

CCelsius	Lpmliters per minute
cfs cubic feet per second	LSILangelier Saturation Index
cm centimeters	mmeters
DO dissolved oxygen	MGmillion gallons
EMF electromotive force	MGDmillion US gallons per day
F Fahrenheit	mg/Lmilligrams per liter
ft feet	minminutes
ft lb foot-pound	mLmilliliters
g grams	MLmillion liters
galUS gallons	MLDmillion liters per day
gfd US gallons flux per day	ORP oxidation reduction potential
gpcd US gallons per capita per day	ppbparts per billion
gpdUS gallons per day	ppmparts per million
gpg grains per US gallon	psipounds per square inch
gpm US gallons per minute	Q flow
hp horsepower	RPMrevolutions per minute
hr hours	SDIsludge density index
in inches	secsecond
kg kilograms	SSsettleable solids
km kilometers	TOCtotal organic carbon
kPa kilopascals	TSStotal suspended solids
kW kilowatts	TTHMtotal trihalomethanes
kWh kilowatt-hours	VSvolatile solids
Lliters	Wwatts
lbpounds	ydyards
Lpcd liters per capita per day	yryears
Lpd liters per day	-

Conversion Factors

1 acre = 43,560 ft ²	1 inch = 2.54 cm
$= 4.046.9 \text{ m}^2$	1 liter per second = 0.0864 MLD
1 acre foot of water = 326,000 gal	1 meter of water = 9.8 kPa
1 cubic foot of water = 7.48 gal	1 metric ton = 2,205 lb
= 62.4 lb	= 1,000 kg
1 cubic foot per second = 0.646 MGD	1 mile = 5,280 ft
=448.8 gpm	= 1.61 km
1 cubic meter of water = 1,000 kg	1 million US gallons per day = 694 gpm
= 1,000 L	$= 1.55 \text{ ft}^3/\text{sec}$
= 264 gal	1 pound = 0.454 kg
1 foot = 0.305 m	1 pound per square inch = 2.31 ft of water
1 foot of water = 0.433 psi	= 6.89 kPa
1 gallon (US)= 3.785 L	1 square meter = 1.19 yd ²
= 8.34 lb of water	1 ton = 2,000 lb
l grain per US gallon= 17.1 mg/L	1% = 10,000 mg/L
hectare = $10,000 \text{ m}^2$	π or pi = 3.14
1 horsepower = 0.746 kW	r
= 746 W	
= 33,000 ft lb/min	


Alkalinity Relationships

All Alkalinity expressed as mg/L as CaCO3 • P – phenolphthalein alkalinity • T – total alkalinity

Result of Titration	Hydroxide Alkalinity	Carbonate Alkalinity	Bicarbonate Concentration	
P = 0	0	0	T	
$P < \frac{1}{2}T$	0	2P	T-2P	
$P = \frac{1}{2}T$	0	2P	0	
$P > \frac{1}{2}T$	2P - T	2(T-P)	0	
P = T	T	0	0	

^{*}Pie Wheel Format for this equation is available at the end of this document

- To find the quantity above the horizontal line: multiply the pie wedges below the line together.
- To solve for one of the pie wedges below the horizontal line: cover that pie wedge, then divide the remaining pie wedge(s) into the quantity above the horizontal line.
- Given units must match the units shown in the pie wheel.
- When US and metric units or values differ, the metric is shown in parentheses, e.g. (m²).

^{*}Pie Wheel Format for this equation is available at the end of this document